If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4(x^2+x-4)=0
We multiply parentheses
4x^2+4x-16=0
a = 4; b = 4; c = -16;
Δ = b2-4ac
Δ = 42-4·4·(-16)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{17}}{2*4}=\frac{-4-4\sqrt{17}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{17}}{2*4}=\frac{-4+4\sqrt{17}}{8} $
| 7x^2-105x-3150=0 | | w/5+3=-11 | | 9=5n-3n | | 8y+14=4y-2 | | 20x+16x+13+10x=180 | | (2x+33)+(3x+20)=133 | | 9a-71=4 | | -t=9(t10-) | | 10(x+2)-3x=5(6-x)+2 | | 20x+16x+13=10x | | (2)1.5n=2 | | O.60d=41.67 | | 7x-7=2x+2 | | 19-x+59=39 | | 20x+1+16x+13+10x=180 | | -t=9(t-10-) | | (x/2)+23=30 | | 10(g+5)=2(9+9) | | X/6+x/5=5/12 | | 60/5=50n | | 88+x-42+13=83 | | X^2-33x+116=0 | | 6(2-k)=-24+12k | | 24+x-24=79 | | 6(2-k)=-24+21k | | 3d+25+4d=84 | | 10-5-x-3=1 | | 246=8-7(1+5x) | | 4–10s=-8s | | 3/x-4.1=9.7 | | 10(g+5=2(9+9) | | 10(g+5=2(9+9 |